# THREE RIVERS MILL (PWS 2250125) SOURCE WATER ASSESSMENT FINAL REPORT February 26, 2003 # State of Idaho Department of Environmental Quality **Disclaimer:** This publication has been developed as part of an informational service for the source water assessments of public water systems in Idaho and is based on data available at the time and the professional judgement of the staff. Although reasonable efforts have been made to present accurate information, no guarantees, including expressed or implied warranties of any kind, are made with respect to this publication by the State of Idaho or any of its agencies, employees, or agents, who also assume no legal responsibility for the accuracy of presentations, comments, or other information in this publication. The assessment is subject to modification if new data is produced. ## **Executive Summary** Under the Safe Drinking Water Act Amendments of 1996, all states are required by the U.S. Environmental Protection Agency to assess every source of public drinking water for its relative sensitivity to contaminants regulated by the Act. This assessment is based on a land use inventory of the designated source water assessment area and sensitivity factors associated with the well and aquifer characteristics. This report, *Source Water Assessment for Three Rivers Mill, Idaho*, describes the public drinking water system, the boundaries of the zones of water contribution, and the associated potential contaminant sources located within these boundaries. This assessment should be used as a planning tool, taken into account with local knowledge and concerns, to develop and implement appropriate protection measures for this source. The results should <u>not be</u> used as an absolute measure of risk and they should <u>not be</u> used to undermine public confidence in the water system. Three Rivers Mill drinking water system consists of one active groundwater well. The well is located approximately 1 mile northeast of Kamiah. The system currently serves approximately 100 people through 9 connections. Final susceptibility scores are derived from equally weighing system construction scores, hydrologic sensitivity scores, and Potential Contaminant/Land Use scores. Therefore, a low rating in one or two categories coupled with a higher rating in other category (ies) results in a final rating of low, moderate, or high susceptibility. With the potential contaminants associated with most urban and heavily agricultural areas, the best score a well can get is moderate. Potential Contaminants/Land Uses are divided into four categories, inorganic contaminants (IOCs, i.e. nitrates, arsenic), volatile organic contaminants (VOCs, i.e. petroleum products), synthetic organic contaminants (SOCs, i.e. pesticides), and microbial contaminants (i.e. bacteria). As different wells can be subject to various contamination settings, separate scores are given for each type of contaminant. In terms of total susceptibility, the well rated high for IOCs, and automatically high for VOCs, SOCs, and microbial contaminants. System construction and hydrologic sensitivity both rated high. Land use rated low for IOCs, VOCs, SOCs, and low for microbials contaminants. The automatically high ratings are due to a detection of the VOC toluene (November 1994), the SOC Di(2-ethylhexyl)-Phthalate (November 1994), and total coliform (January 1996, and August 1996) in the well. If not for the automatic ratings, New Well would have rated moderate for all four potential contaminant categories. The detected IOCs with potential health risks were arsenic, barium, chromium, fluoride, nickel, and nitrate, however, concentrations were significantly below maximum contaminant levels (MCLs) as set by EPA. The IOC sodium was also detected in the water. This assessment should be used as a basis for determining appropriate new protection measures or reevaluating existing protection efforts. No matter what ranking a source receives, protection is always important. Whether the source is currently located in a "pristine" area or an area with numerous industrial and/or agricultural land uses that require surveillance, the way to ensure good water quality in the future is to act now to protect valuable water supply resources. If the system should need to expand in the future, new well or spring sites should be located in areas with as few potential sources of contamination as possible, and the site should be reserved and protected for this specific use. For the Three Rivers Mill, drinking water protection activities should first focus on correcting any deficiencies outlined in the sanitary survey (an inspection conducted every five years with the purpose of determining the physical condition of a water system's components and its capacity). Actions should be taken to keep a 50-foot radius circle clear of all potential contaminants from around the wellheads. Any contaminant spills within the delineations should be carefully monitored and dealt with. As much of the designated protection areas are outside the direct jurisdiction of the Three Rivers Mill, collaboration and partnerships with state and local agencies, and industry groups should be established and are critical to the success of drinking water protection. In addition, the well should maintain sanitary standards regarding wellhead protection. Due to the time involved with the movement of ground water, drinking water protection activities should be aimed at long-term management strategies even though these strategies may not yield results in the near term. For assistance in developing protection strategies please contact the Lewiston Regional Office of the Idaho Department of Environmental Quality or the Idaho Rural Water Association. ## SOURCE WATER ASSESSMENT FOR THREE RIVERS MILL, IDAHO ## Section 1. Introduction - Basis for Assessment The following sections contain information necessary to understand how and why this assessment was conducted. It is important to review this information to understand what the rankings of this assessment mean. Maps showing the delineated source water assessment area and the inventory of significant potential sources of contamination identified within that area are attached. The list of significant potential contaminant source categories and their rankings used to develop the assessment is also included. ## Background Under the Safe Drinking Water Act Amendments of 1996, all states are required by the U.S. Environmental Protection Agency (EPA) to assess every source of public drinking water for its relative susceptibility to contaminants regulated by the Safe Drinking Water Act. This assessment is based on a land use inventory of the delineated assessment area and sensitivity factors associated with the wells and aquifer characteristics. ## Level of Accuracy and Purpose of the Assessment Since there are over 2,900 public water sources in Idaho, there is limited time and resources to accomplish the assessments. All assessments must be completed by May of 2003. An in-depth, site-specific investigation of each significant potential source of contamination is not possible. Therefore, this assessment should be used as a planning tool, taken into account with local knowledge and concerns, to develop and implement appropriate protection measures for this source. The results should <u>not be</u> used as an absolute measure of risk and they should <u>not be</u> used to undermine public confidence in the water system. The ultimate goal of the assessment is to provide data to local communities to develop a protection strategy for their drinking water supply system. The Idaho Department of Environmental Quality (DEQ) recognizes that pollution prevention activities generally require less time and money to implement than treatment of a public water supply system once it has been contaminated. DEQ encourages communities to balance resource protection with economic growth and development. The local community, based on its own needs and limitations, should determine the decision as to the amount and types of information necessary to develop a drinking water protection program. Wellhead or drinking water protection is one facet of a comprehensive growth plan, and it can complement ongoing local planning efforts. ## **Section 2. Conducting the Assessment** ### **General Description of the Source Water Quality** Three Rivers Mill drinking water system consists of one active groundwater well. The well is located approximately 1 mile northeast of Kamiah. The system currently serves approximately 100 people through 9 connections. The detected IOCs with potential health risks were arsenic, barium, chromium, fluoride, nickel, and nitrate, however, concentrations were significantly below maximum contaminant levels (MCLs) as set by EPA. The IOC sodium was also detected in the water. ## **Defining the Zones of Contribution – Delineation** The delineation process establishes the physical area around a well that will become the focal point of the assessment. The process includes mapping the boundaries of the zone of contribution into time-of-travel (TOT) zones (zones indicating the number of years necessary for a particle of water to reach a well) for water in the aquifer. DEQ contracted with the University of Idaho to perform the delineations using a refined computer model approved by the EPA in determining the 3-year (Zone 1B), 6-year (Zone 2), and 10-year (Zone 3) TOT for water associated with the aquifer of the Clearwater Uplands in the vicinity of the Three Rivers Mill wells. The computer model used site specific data, assimilated by the University of Idaho from a variety of sources including operator input, local area well logs, and hydrogeologic reports (detailed below). # **Hydrogeologic Setting** The conceptual hydrogeologic model for the Three Rivers Mill source well, New Well, approximately one mile north of Kamiah, Idaho is based on interpretation of available well logs and published geologic maps. The source well logs indicate water is derived from sediments. The geology is based on the geologic maps of the Hamilton quadrangle and Pullman quadrangle at a scale of 1:250,000 (Rember and Bennett, 1979). Geology of the area is quite complex with northwest-southeast trending structural features to the east of the sources near Kamiah. Basalt of the Columbia River Basalt Group, and crystalline rock of the Idaho Batholith are found in the area. The ground elevation is approximately 1160 feet above mean sea level (msl) at the well. Little information is known about the hydrogeology of the area. Neighboring private wells are used for test points in the WhAEM simulations. Information on test points was obtained from a search of the Idaho Department of Water Resources database available on the internet. The locations of the test points are limited to information supplied on well logs, typically the quarter-quarter section (0.0625 mile<sup>2</sup>). Therefore, the accuracy of the test point elevation and the static water elevation is dependent upon the accuracy of the driller's log and the amount of topographic relief in the quarter-quarter section. The capture zones delineated herein are based on limited data and must be taken as best estimates. If more data become available in the future these delineations should be adjusted based on additional modeling incorporating the new data. FIGURE 1. Geographic Location of Three Rivers Mill STATE OF IDAHO COEUR D'ALENE 50 100 150 Miles BAHO COUNTY LEWISTON KAMIAH IDAHO FALLS POCATELLO TWIN FAILS **NEW WELL** 5 Miles The delineated capture zone for New Well can best be described as a northeast trending lobe approximately 3000 feet long and 1500 feet wide (Figure 2). ## **Identifying Potential Sources of Contamination** A potential source of contamination is defined as any facility or activity that stores, uses, or produces, as a product or by-product, the contaminants regulated under the Safe Drinking Water Act and has a sufficient likelihood of releasing such contaminants at levels that could pose a concern relative to drinking water sources. The goal of the inventory process is to locate and describe those facilities, land uses, and environmental conditions that are potential sources of groundwater contamination. The locations of potential sources of contamination within the delineation areas were obtained by field surveys conducted by DEQ and from available databases. Land use within the immediate area and the surrounding area of the Three Rivers Mill source is almost exclusively rangeland, woodland, or basalt. A railroad and Woodland Grade intersect the delineation. It is important to understand that a release may never occur from a potential source of contamination provided they are using best management practices. Many potential sources of contamination are regulated at the federal level, state level, or both to reduce the risk of release. Therefore, when a business, facility, or property is identified as a potential contaminant source, this should not be interpreted to mean that this business, facility, or property is in violation of any local, state, or federal environmental law or regulation. What it does mean is that the <u>potential</u> for contamination exists due to the nature of the business, industry, or operation. There are a number of methods that water systems can use to work cooperatively with potential sources of contamination, including educational visits and inspections of stored materials. Many owners of such facilities may not even be aware that they are located near a public water supply well. #### **Contaminant Source Inventory Process** A two-phased contaminant inventory of the study area was conducted in September and October 2002. The first phase involved identifying and documenting potential contaminant sources within the Three Rivers Mill source water assessment areas (Figure 2 and 3, and Table 1 and 2) through the use of computer databases and Geographic Information System (GIS) maps developed by DEQ. The second, or enhanced, phase of the contaminant inventory involved contacting the operator to identify and add any additional potential sources in the area. No additional potential contaminant sources were identified by the system's operator. The delineated source water assessment area of the Three Rivers Mill well does not contain any identified point sources, however, a railroad and a transportation corridor intersect the delineation. These sources can contribute leachable contaminants to the aquifer in the event of an accidental spill, release, or flood. Table 1. Three Rivers Mill, Well #1, Potential Contaminant/Land Use Inventory. | Site | Description of Source | TOT <sup>1</sup> Zone | Source of Information | Potential Contaminants <sup>2</sup> | | | | |------|-----------------------|-----------------------|-----------------------|-------------------------------------|--|--|--| | | Railroad | 0 - 3 YR | GIS Map | IOC, VOC, SOC, Microbials | | | | | | Woodland Grade | 3 - 10 YR | GIS Map | IOC, VOC, SOC | | | | <sup>&</sup>lt;sup>1</sup>TOT = time-of-travel (in years) for a potential contaminant to reach the wellhead <sup>&</sup>lt;sup>2</sup> IOC = inorganic chemical, VOC = volatile organic chemical, SOC = synthetic organic chemical ## **Section 3. Susceptibility Analyses** Each well or spring's susceptibility to contamination was ranked as high, moderate, or low risk according to the following considerations: hydrologic characteristics, physical integrity of the well, land use characteristics, and potentially significant contaminant sources. The susceptibility rankings are specific to a particular potential contaminant or category of contaminants. Therefore, a high susceptibility rating relative to one potential contaminant does not mean that the water system is at the same risk for all other potential contaminants. The relative ranking that is derived for each well or spring is a qualitative, screening-level step that, in many cases, uses generalized assumptions and best professional judgement. Appendix A contains the susceptibility analysis worksheets for the system. The following summaries describe the rationale for the susceptibility ranking. ## **Hydrologic Sensitivity** The hydrologic sensitivity of a well is dependent upon four factors: the surface soil composition, the material in the vadose zone (between the land surface and the water table), the depth to first ground water, and the presence of a 50-foot thick fine-grained zone (aquitard) above the producing zone of the well. Slowly draining soils such as silt and clay typically are more protective of ground water than coarse-grained soils such as sand and gravel. Similarly, fine-grained sediments in the subsurface and a water depth of more than 300 feet protect the ground water from contamination. Hydrologic sensitivity rated high for New Well. Soils surrounding the wells are considered moderately- to well-drained by the Natural Resource Conservation Service (NRCS). In addition, the depth to the water table is less than 300 feet, and because the original well log did not have lithological information, it is unknown if the vadose zone is composed of impermeable materials, or if an aquitard is present above the producing zone of the well. #### **System Construction** #### **Well Construction** Well construction directly affects the ability of the well to protect the aquifer from contaminants. System construction scores are reduced when information shows that potential contaminants will have a more difficult time reaching the intake of the well. Lower scores imply a system is less vulnerable to contamination. For example, if the well casing and annular seal both extend into a low permeability unit, then the possibility of contamination is reduced and the system construction score goes down. If the highest production interval is more than 100 feet below the water table, then the system is considered to have better buffering capacity. If the wellhead and surface seal are maintained to standards, as outlined in sanitary surveys, then contamination down the well bore is less likely. If the well is protected from surface flooding and is outside the 100-year floodplain, then contamination from surface events is reduced. A sanitary survey was conducted in 1998 for the system. New Well rated high susceptibility for system construction. The well was originally drilled in 1995 to 200 feet below ground surface (bgs) and a 6-inch casing of unknown thickness was placed from 2 feet above ground to 117 feet bgs. In 1996, the well was deepened to 300 feet bgs into green granite, and a 4.5 inch PVC pipe was installed from 40 feet bgs to 300 feet bgs. Perforations were cut into the lower 40 feet of the PVC casing. The high rating was derived from the following: The well is located outside of a 100-year floodplain according to the National Resource Conservation Service (NRCS) and the highest production of the well comes from more than 100 feet below static water levels. However, not all the casings and annular seal extend into low permeability units, and the surface seal/wellhead access needs to be restricted and the casing needs to be equipped with a vent. Though the well may have been in compliance with standards when it was completed, current PWS well construction standards are more stringent. The Idaho Department of Water Resources *Well Construction Standards Rules* (1993) require all PWSs to follow DEQ standards as well. IDAPA 58.01.08.550 requires that PWSs follow the *Recommended Standards for Water Works* (1997) during construction. These standards include provisions for well screens, pumping tests, and casing thickness to name a few. Table 1 of the *Recommended Standards for Water Works* (1997) lists the required steel casing thickness for various diameter wells. A 6-inch casing requires a 0.280 inch thickness. Because the well did not meet all current construction standards, the well was assessed an additional point in the system construction rating. #### **Potential Contaminant Source and Land Use** New Well rated low for IOCs (i.e. nitrates, arsenic), VOCs (i.e. petroleum products), SOCs (i.e. pesticides), and microbials. The two transportation corridors (railroad and Woodland Grade) intersect the delineation. The low number and location of potential contaminant sources within the delineation contributed to the low land use scores. ## **Final Susceptibility Ranking** An IOC detection above a drinking water standard MCL, any detection of a VOC or SOC, or a detection of total coliform bacteria or fecal coliform bacteria at the wellhead will automatically give a high susceptibility rating to a well despite the land use of the area because a pathway for contamination already exists. In this case the rated automatically high due to a detection of the VOC toluene (November 1994), the SOC Di(2-ethylhexyl)-Phthalate (November 1994), and total coliform (January 1996, and August 1996) at the wellhead. Hydrologic sensitivity and system construction scores are heavily weighted in the final scores. Having multiple potential contaminant sources in the 0 to 3-year time of travel zone (Zone 1B) and agricultural land contribute greatly to the overall ranking. Table 2. Summary of Three Rivers Mill Susceptibility Evaluation | | Susceptibility Scores <sup>1</sup> | | | | | | | | | | |----------|------------------------------------|--------------------------|-----|------------------------|------------------------------|---|-----|-----|-----|------------| | Well | Hydrologic<br>Sensitivity | Contaminant<br>Inventory | | System<br>Construction | Final Susceptibility Ranking | | | | | | | | | IOC | VOC | SOC | Microbials | | IOC | VOC | SOC | Microbials | | New Well | Н | L | L | L | L | M | M | H* | H* | H* | <sup>&</sup>lt;sup>1</sup>H = High Susceptibility, M = Moderate Susceptibility, L = Low Susceptibility, IOC = inorganic chemical, VOC = volatile organic chemical, SOC = synthetic organic chemical H\* = Automatic high susceptibility due to a detection of the VOC toluene (November 1994), the SOC Di(2-ethylhexyl)-Phthalate (November 1994), and total coliform (January 1996, and August 1996) at the wellhead #### **Susceptibility Summary** Three Rivers Mill drinking water system consists of one active groundwater well. The well is located approximately 1 mile northeast of Kamiah. The system currently serves approximately 100 people through 9 connections. In terms of total susceptibility, the well rated high for IOCs, and automatically high for VOCs, SOCs, and microbial contaminants. System construction and hydrologic sensitivity both rated high. Land use rated low for IOCs, VOCs, SOCs, and low for microbials contaminants. The automatically high ratings are due to a detection of the VOC toluene (November 1994), the SOC Di(2-ethylhexyl)-Phthalate (November 1994), and total coliform (January 1996, and August 1996) in the well. If not for the automatic ratings, New Well would have rated moderate for all four potential contaminant categories. ## **Section 4. Options for Drinking Water Protection** The susceptibility assessment should be used as a basis for determining appropriate new protection measures or re-evaluating existing protection efforts. No matter what the susceptibility ranking a source receives, protection is always important. Whether the source is currently located in a "pristine" area or an area with numerous industrial and/or agricultural land uses that require surveillance, the way to ensure good water quality in the future is to act now to protect valuable water supply resources. For the Three Rivers Mill, drinking water protection activities should first focus on correcting any deficiencies outlined in the sanitary survey. No chemicals should be stored or applied within the 50-foot radius of the wellheads. As much of the designated protection areas are outside the direct jurisdiction of the Three Rivers Mill, collaboration and partnerships with state and local agencies, and industry groups should be established and are critical to the success of drinking water protection. In addition, the well should maintain sanitary standards regarding wellhead protection. Due to the time involved with the movement of ground water, drinking water protection activities should be aimed at long-term management strategies even though these strategies may not yield results in the near term. A strong public education program should be a primary focus of any drinking water protection plan as the delineation encompasses urban and commercial land uses. Public education topics could include hazardous waste disposal methods and the importance of water conservation to name but a few. There are multiple resources available to help communities implement protection programs, including the Drinking Water Academy of the EPA. A system must incorporate a variety of strategies in order to develop a comprehensive drinking water protection plan, be they regulatory in nature (i.e. zoning, permitting) or non-regulatory in nature (i.e. good housekeeping, public education, specific best management practices). For assistance in developing protection strategies please contact the Lewiston Regional Office of the DEQ or the Idaho Rural Water Association. #### Assistance Public water supplies and others may call the following DEQ offices with questions about this assessment and to request assistance with developing and implementing a local protection plan. In addition, draft protection plans may be submitted to the DEQ office for preliminary review and comments. Lewiston Regional DEQ Office (208) 799-4370 State DEQ Office (208) 373-0502 Website: <a href="http://www.deq.state.id.us">http://www.deq.state.id.us</a> Water suppliers serving fewer than 10,000 persons may contact Melinda Harper, <a href="mlharper@idahoruralwater.com">mlharper@idahoruralwater.com</a>, Idaho Rural Water Association, at 208-343-7001 for assistance with drinking water protection (formerly wellhead protection) strategies. # POTENTIAL CONTAMINANT INVENTORY LIST OF ACRONYMS AND DEFINITIONS <u>AST (Aboveground Storage Tanks)</u> – Sites with aboveground storage tanks. <u>Business Mailing List</u> – This list contains potential contaminant sites identified through a yellow pages database search of standard industry codes (SIC). <u>CERCLIS</u> – This includes sites considered for listing under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA, more commonly known as ASuperfund≅ is designed to clean up hazardous waste sites that are on the national priority list (NPL). <u>Cyanide Site</u> – DEQ permitted and known historical sites/facilities using cyanide. <u>Dairy</u> – Sites included in the primary contaminant source inventory represent those facilities regulated by Idaho State Department of Agriculture (ISDA) and may range from a few head to several thousand head of milking cows. <u>Deep Injection Well</u> – Injection wells regulated under the Idaho Department of Water Resources generally for the disposal of stormwater runoff or agricultural field drainage. **Enhanced Inventory** – Enhanced inventory locations are potential contaminant source sites added by the water system. These can include new sites not captured during the primary contaminant inventory, or corrected locations for sites not properly located during the primary contaminant inventory. Enhanced inventory sites can also include miscellaneous sites added by the Idaho Department of Environmental Quality (DEQ) during the primary contaminant inventory. Floodplain - This is a coverage of the 100year floodplains. <u>Group 1 Sites</u> – These are sites that show elevated levels of contaminants and are not within the priority one areas. <u>Inorganic Priority Area</u> – Priority one areas where greater than 25% of the wells/springs show constituents higher than primary standards or other health standards. <u>Landfill</u> – Areas of open and closed municipal and non-municipal landfills. <u>LUST (Leaking Underground Storage Tank)</u> – Potential contaminant source sites associated with leaking underground storage tanks as regulated under RCRA. <u>Mines and Quarries</u> – Mines and quarries permitted through the Idaho Department of Lands.) <u>Nitrate Priority Area</u> – Area where greater than 25% of wells/springs show nitrate values above 5 mg/L. #### NPDES (National Pollutant Discharge Elimination System) Sites with NPDES permits. The Clean Water Act requires that any discharge of a pollutant to waters of the United States from a point source must be authorized by an NPDES permit. <u>Organic Priority Areas</u> – These are any areas where greater than 25 % of wells/springs show levels greater than 1% of the primary standard or other health standards. <u>Recharge Point</u> – This includes active, proposed, and possible recharge sites on the Snake River Plain. **RICRIS** – Site regulated under **Resource Conservation Recovery Act (RCRA)**. RCRA is commonly associated with the cradle to grave management approach for generation, storage, and disposal of hazardous wastes. SARA Tier II (Superfund Amendments and Reauthorization Act Tier II Facilities) – These sites store certain types and amounts of hazardous materials and must be identified under the Community Right to Know Act. Toxic Release Inventory (TRI) – The toxic release inventory list was developed as part of the Emergency Planning and Community Right to Know (Community Right to Know) Act passed in 1986. The Community Right to Know Act requires the reporting of any release of a chemical found on the TRI list. <u>UST (Underground Storage Tank)</u> – Potential contaminant source sites associated with underground storage tanks regulated as regulated under RCRA. <u>Wastewater Land Applications Sites</u> – These are areas where the land application of municipal or industrial wastewater is permitted by DEQ. <u>Wellheads</u> – These are drinking water well locations regulated under the Safe Drinking Water Act. They are not treated as potential contaminant sources. **NOTE:** Many of the potential contaminant sources were located using a geocoding program where mailing addresses are used to locate a facility. Field verification of potential contaminant sources is an important element of an enhanced inventory. Where possible, a list of potential contaminant sites unable to be located with geocoding will be provided to water systems to determine if the potential contaminant sources are located within the source water assessment area. #### **References Cited** - Great Lakes-Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers, 1997. "Recommended Standards for Water Works." - Idaho Department of Agriculture, 1998. Unpublished Data. - Idaho Department of Environmental Quality, 1997. Design Standards for Public Drinking Water Systems. IDAPA 58.01.08.550.01. - Idaho Department of Environmental Quality, 2002. Drinking Water Supply Report for the Three Rivers Mill. - Idaho Department of Water Resources, 1993. Administrative Rules of the Idaho Water Resource Board: Well Construction Standards Rules. IDAPA 37.03.09. - Idaho Department of Environmental Quality, 2001. Ground Water Under Direct Influence Field Survey for Three Rivers Mill. - IDAPA 58.01.08, Idaho Rules for Public Drinking Water Systems, Section 004. - Lewis, R.S., Bush, J.H., Burmester, R.F., Kauffman, J.D., Garwood, D.L., Meyers, P.E., Otherberg, K. L., and McClellend, W.; 2001. Geologic Map of the Potlatch 30 X 60 Quadrangle, Idhao, Idaho Bureau of Mines and Geology, Moscow, ID. Ralston, D.R., and Bush, J.H.; 1995. Hydrogeology of the Troy Area and Analysis of Well Development Potential. Dale R. Ralston, Consultant in Hydrogeology, Report. Well Driller's Report for Three Rivers Timber, 1996 Well Driller's Report for Weyerhauser Mill, 1995 # Appendix A Three Rivers Mill Susceptibility Analysis Worksheet ## Formulas used to determine Susceptibility Analysis Final Scores ## **Formula for Well Sources** - 1) VOC/SOC/IOC Final Score = Hydrologic Sensitivity + System Construction + (Potential Contaminant/Land Use x 0.2) - 2) Microbial Final Score = Hydrologic Sensitivity + System Construction + (Potential Contaminant/Land Use x 0.375) ## Final Susceptibility Scoring: - 0 5 Low Susceptibility - 6 12 Moderate Susceptibility - ≥ 13 High Susceptibility Ground Water Susceptibility Report Public Water System Name: THREE RIVERS MILL Well# : NEW WELL Public Water System Number 2250125 D2/27/2003 11:17:27 AM | | Tumber 2250125 | | 0 | 12/27/2003 | 11:17:27 # | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|-------------|-------------|------------| | . System Construction | | SCORE | | | | | Drill Date | 11/14/1995 and 8/1/1996 | | | | | | Driller Log Available | YES | | | | | | Sanitary Survey (if yes, indicate date of last survey) | YES | 2002 | | | | | Well meets IDWR construction standards | NO | 1 | | | | | | | | | | | | Wellhead and surface seal maintained | NO | 1 | | | | | Casing and annular seal extend to low permeability unit | NO | 2 | | | | | Highest production 100 feet below static water level | NO | 1 | | | | | Well located outside the 100 year flood plain | YES | 0 | | | | | | Total System Construction Score | 5 | | | | | . Hydrologic Sensitivity | | | | | | | Soils are poorly to moderately drained | NO | 2 | | | | | Vadose zone composed of gravel, fractured rock or unknown | YES | 1 | | | | | Depth to first water > 300 feet | NO | 1 | | | | | Aquitard present with > 50 feet cumulative thickness | NO | 2 | | | | | | Total Hydrologic Score | 6 | | | | | | | IOC | VOC | SOC | Microbial | | B. Potential Contaminant / Land Use - ZONE 1A | | Score | Score | Score | Score | | Land Use Zone 1A | RANGELAND, WOODLAND, BASALT | 0 | 0 | 0 | 0 | | Farm chemical use high | NO | 0 | 0 | 0 | | | IOC, VOC, SOC, or Microbial sources in Zone 1A | YES | NO | YES | YES | YES | | | ial Contaminant Source/Land Use Score - Zone 1A | 0 | 0 | 0 | 0 | | Potential Contaminant / Land Use - ZONE 1B | | | | | | | Contaminant sources present (Number of Sources) | YES | 1 | 1 | 1 | 1 | | (Score = # Sources X 2 ) 8 Points Maximum | | 2 | 2 | 2 | 2 | | Sources of Class II or III leacheable contaminants or | YES | 1 | 1 | 1 | | | 4 Points Maximum | | 1 | 1 | 1 | | | Zone 1B contains or intercepts a Group 1 Area | NO | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | | Land use Zone 1B | Less Than 25% Agricultural Land | | · · | | | | Total Potentia | al Contaminant Source / Land Use Score - Zone 1B | 3 | 3 | 3 | 2 | | Potential Contaminant / Land Use - ZONE II | | | | | | | Contaminant Sources Present | YES | 2 | 2 | 2 | | | Sources of Class II or III leacheable contaminants or | YES | 1 | 1 | 1 | | | Land Use Zone II | Less than 25% Agricultural Land | 0 | 0 | 0 | | | | | | 3 | 3 | 0 | | Potential | Contaminant Source / Land Use Score - Zone II | 3 | | | | | Potential Contaminant / Land Use - ZONE III | · | 3 | | | | | Potential Contaminant / Land Use - ZONE III | · | 3<br><br>1 | | 1 | | | Potential Contaminant / Land Use - ZONE III | | | | 1<br>1 | | | Potential Contaminant / Land Use - ZONE III Contaminant Source Present Sources of Class II or III leacheable contaminants or Is there irrigated agricultural lands that occupy > 50% of | YES<br>YES<br>NO | 1<br>1<br>0 | 1<br>1<br>0 | | | | Potential Contaminant / Land Use - ZONE III Contaminant Source Present Sources of Class II or III leacheable contaminants or Is there irrigated agricultural lands that occupy > 50% of Total Potential | YES YES NO Contaminant Source / Land Use Score - Zone III | 1<br>1<br>0 | 1<br>1<br>0 | 1<br>0<br>2 | 0 | | Potential Contaminant / Land Use - ZONE III Contaminant Source Present Sources of Class II or III leacheable contaminants or Is there irrigated agricultural lands that occupy > 50% of Total Potential Cumulative Potential Contaminant / Land Use Score | YES<br>YES<br>NO<br>. Contaminant Source / Land Use Score - Zone III | 1<br>1<br>0 | 1<br>1<br>0 | 2 | 2 | | Potential Contaminant / Land Use - ZONE III Contaminant Source Present Sources of Class II or III leacheable contaminants or Is there irrigated agricultural lands that occupy > 50% of Total Potential | YES<br>YES<br>NO<br>. Contaminant Source / Land Use Score - Zone III | 1<br>1<br>0 | 1<br>1<br>0 | 2 | | 17